
Advanced Air Transportation
Concepts and Technologies (AATT)

RTO-80: Development of a Pre- and Post-
Processing Environment for ACES that

Incorporates JView Software for

Visualization

Deliverable Item 4:

RTO80 Final Report

30 September 2004

Contract Number NAS2-98002

Prepared for:

NASA Ames Research Center

Prepared By:
Science Applications International Corporation,
Simulation and Information Technology Operation,

Arlington, VA

This page intentionally left blank.

Table of Contents

1 INTRODUCTION 1

1.1 BACKGROUND 1

1.2 ACES ARCHITECTURE 1

1.3 PROJECT GOALS 3

1.4 DELIVERABLES 4

2 SPADES DATABASE 7

2.1 DESCRIPTION 7

2.2 DEVELOPMENT PROCESS 8

2.3 IMPLEMENTATION 11

3 ASRTV VIEWER 11

3.1 DESCRIPTION 11

3.2 FEATURES 14

3.3 DEVELOPMENT PROCESS 15

3.4 AREAS FOR POTENTIAL FUTURE ENHANCEMENT 15

4 SPADES WEATHER EDITOR 17

4.1 DESCRIPTION 17

4.2 FEATURES 24

4.3 DEVELOPMENT PROCESS 25

4.4 AREAS FOR POTENTIAL FUTURE ENHANCEMENT 25

5 EVALUATION OF JVIEW 26

5.1 SUMMARY 26

5.2 JVIEW STRENGTHS 27

5.3 JVIEW WEAKNESSES 28

5.4 COMPARATIVE ANALYSIS 29

6 SUMMARY 31

7 ACRONYMS 32

8 REFERENCES 33

RTO80 Final Report p. 1

1 Introduction

1.1 Background

This report summarizes research performed to develop and prototype a concept

for pre-runtime tools for the Virtual Modeling and Simulation (VAMS) Airspace
Concept Evaluation System (ACES) simulation system. The research had the
additional goal of evaluating the Air Force Research Labs JView Application

Programmer’s Interface (API) software for use in two- and three-dimensional
visualization of NAS data

The overall goal of the VAMS Project is to provide the foundations required to

define and assess the next generation air transportation system. The VAMS
Project is focused on identifying and assessing the performance of new
operational concepts that, when incorporated into a future Air Traffic

Management system, will result in a revolutionary improvement in system
capacity, at an affordable cost and with no reduction in safety. In particular, the
Virtual Airspace Simulation Technologies (VAST) Sub-Project seeks to develop

airspace simulation environments with the capabilities to assess the integrated
behavior of current and future air transportation system concepts and

technologies at the system-wide level and at the detailed human-in-the-loop
level. There are two research-areas associated with the VAST Sub-Project:
Airspace Modeling and Simulation, and Real-Time Simulation. The work

performed as part of this RTO supported the first research-area, which focuses
on non-real-time modeling and simulation.

This RTO investigated the ability to create a pre- and post-processing

environment for ACES. The products of the RTO work include engineering
designs, software designs and prototype implementations of databases and
tools.

1.2 ACES Architecture

From the outset the architectural design of ACES has encompassed both runtime

and non-runtime applications. The ACES System/Subsystem Design Description
(SSDD) / Software Design Document (SDD) [ACES CTOD 7.27/7.38], describe “a
number of non-runtime components, ... These components focus on scenario

generation, configuration of simulation applications from ACES toolbox
components, data management and assessment tools for analyzing simulation
results.” Figure 1, reproduced from the ACES SSDD, shows a set of non-runtime

Simulation Configuration, library and assessment applications and as a persistent
database holding ACES data.

The ATMSDI CTO-7 effort has developed substantial implementations of the

runtime (yellow/orange in Figure 1) components of the ACES system, however
the mainline ACES development effort has applied relatively little focus to the
non-runtime (purple/white in the figure) components of the system.

RTO80 Final Report p. 2

Data Access

System

Data

Linkages to

External Data

Data Conversions

Library of

Simulations/Tools

Integration/Communications

Data Collection,

Run-time Analysis

(Federates)

Simulation

Execution Mgmt

(including control/

monitoring agents,

multiple run control)

Legacy

Gateways

(Federates)

Simulation

Configuration

Applications

Assessment

Applications

Library

FunctionsA
p
p
lic

a
ti
o
n
s

In
fr

a
s
tr

u
c
tu

re

SQL/XML HLA RMIHTTP

OS Services: file transfer/sharing, networking (TCP, UDP …)

Simulations

(Federates)

M
o
d
e
ls

M
o
d
e
ls

M
o
d
e
ls

Operating System

Common Middleware

Run-time Applications

Non-Run-time Applications

Data Integration Functions

AgentAgent
FrameworkFramework

Data Access

System

Data

Linkages to

External Data

Data Conversions

Library of

Simulations/Tools

Integration/Communications

Data Collection,

Run-time Analysis

(Federates)

Simulation

Execution Mgmt

(including control/

monitoring agents,

multiple run control)

Legacy

Gateways

(Federates)

Simulation

Configuration

Applications

Assessment

Applications

Library

FunctionsA
p
p
lic

a
ti
o
n
s

In
fr

a
s
tr

u
c
tu

re

SQL/XML HLA RMIHTTP

OS Services: file transfer/sharing, networking (TCP, UDP …)

Simulations

(Federates)

M
o
d
e
ls

M
o
d
e
ls

M
o
d
e
ls

Operating System

Common Middleware

Run-time Applications

Non-Run-time Applications

Data Integration Functions

AgentAgent
FrameworkFramework

Figure 1. ACES Simulation System Architectural Approach

Figure 2 shows a process flow view of ACES. ACES is a high fidelity simulation of

a complex system and as such makes use of a great deal of input data. ACES
input data includes static data such as descriptions of the National Airspace
System (e.g., sector boundaries), its hierarchy of control (e.g., sectors

composing an ARTCC), and its users (that is, airlines and aircraft characteristics).
Such data are typically constant over a large set of runs. ACES also contains data

that vary to represent a particular day in the NAS. These data, which include
items such as airline schedules, weather and the like, typically vary from run to
run in an experiment. ACES data also includes system parametric data that are

used to create excursions. Examples of this latter category include variations in
sector and airport capacities.

The left-hand section of Figure 2 depicts a notion for the creation of ACES data.

It shows libraries of ACES data and models that are composed to create the set
of inputs required for runs. The middle section of the figure depicts execution
using the composed inputs using ACES, and the right-hand section shows post-

run analysis of ACES outputs.

Input data for baseline ACES releases primarily take the form of text files. Such
“flat files” can easily be edited using a plain text editor, however this format has

a number of drawbacks. First, as the collection of data grows, maintaining the
set of files becomes difficult. For example, a modeling change in Build 3 required
the addition of a data column to Flight Data Set files. A change such as this

requires manual modification of a large number of files or maintenance of the
ability to support an ever-growing number of legacy formats. Referential integrity

RTO80 Final Report p. 3

is difficult to maintain in flat files as well. As an example, adding an airport to
ACES requires separate changes to a number of files, a time-consuming process.

Last, using flat files it is difficult to characterize or perform quality checks on
data. A question such as “how many flights in this Flight Data Set have Denver
as their departure airport?” or “does this Flight Data Set have any flights serving

airports that are not in my list of airports?” are virtually impossible to answer
using flat files. Manual edits to flat files also tend to be error-prone, introducing
data and formatting errors into the data.

In recognition of the shortcomings of flat files, it has generally been accepted
that ACES input data will ultimately migrate from flat files to databases.

Databases, though, are not a panacea in and of themselves. Storage of data in a

relational database management system solves all of the flat file problems noted
above, however database introduce two types of challenges of their own. First,
efficient database design is more difficult than simply putting data in files.

Second, while relational database management systems are powerful, structured
tools, their native interfaces (typically SQL command lines or other query-based
tools) are unfamiliar to analysts and so would present something of a learning

curve to ACES users.

1.3 Project Goals

A primary goal of the RTO80 project effort, as stated in the RFP was “enhancing
ACES usability by designing and developing pre-processing capabilities.” This
goal was addressed through design and prototype implementation of a system

Distributed Simulator

Simulation
Control

Assessment

Post-Run
Modeling

Pre-Processes Run-Time Assessments

Scenario
Data

Scenario
Generation

Tools

Simulation
Configuration

Tools

Models
Data
Sets

Run-Time
Data Sets

Post-Run
Data Sets

Modeling “Toolbox” Scalable, re-configurable,
architectural framework

Simulation specific
models & data sets

Simulation specific
run-time configuration

Visualization
Tools

Data Collection

Figure 2: ACES Process Flow

RTO80 Final Report p. 4

concept called the Scenario Processing and Data Environment for Simulations
(SPADES).

The RTO80 Task Statement defined four major tasks to be performed under the
effort, including:

1. Separate the ACES Simulation Control and VST functions: Within

ACES, the Simulation Control and VST functions are not cleanly separated.
Simulation Control and visualization are combined in a single application.

2. Define the pre-processing environment: Create a concept for a pre-
processing environment for ACES.

3 . Prototype pre-processing software: Create prototypes to
demonstrate the system concept developed under item #2.

4. Demonstrate Visualization of ACES Data Using Jview: Investigate

the applicability of the JView 3D API in visualizing ACES runtime and non-
runtime data.

Effort against the first task listed above focused on creating a separate
visualization federate using JView. In recognition of the relational database

characteristics mentioned in the previous section, the effort on the second and
third of these tasks focused on defining a database schema for ACES data,
developing a set of prototypes of JView-based ACES tool capabilities and

demonstration of how a data repository can be linked to existing ACES code
through legacy flat file formats. The fourth task was accomplished through the
use of JView in the prototype pre-processing tools and visualization federate.

1.4 Deliverables

1.4.1 Overview of Major Deliverables

The products of this research effort include designs, prototype implementations
and documentation. The designs include database, engineering and software

designs. The prototype software implementations include both software and
associated user manuals describing the installation, configuration and use of the

software, and images of the use of JView. The user manuals were written with
target audiences of both NASA researchers who are experts with the ACES
simulation system and concept developers supporting the VAMS Project who are

not expert users.

The following list summarizes the project deliverables. Each major product (save
for this report) is described in greater detail in subsequent sections.

SPADES Database

This deliverable was a representation of the Build 2.0.3 ACES data in a

normalized relational database format. It was created to satisfy the requirements
to “define the pre-processing environment” and “prototype pre-processing

software”. Deliveries included:

RTO80 Final Report p. 5

 Database schema design that captured the breadth of ACES input data.

Provided as a database design document

 Prototype implementation using the MySQL RDBMS, populated with example

data drawn from the Build 2.0.3 ACES data set.

ASRTV Runtime Visualization

This deliverable was created to satisfy the requirement to “separate the ACES
Simulation Control and VST”. It consists of a separate runtime visualization

federate that runs as part of an ACES federation. It displays a superset of the
data displayed by VST and offers both two dimensional and three dimensional
views. The deliverable also included ACES VST and Simstartup modifications

required to integrate the additional viewer. Deliveries included:

 Initial software delivery compliant with ACES Build 2.0.3

 Updated version compliant with ACES Build 3.0.1 and incorporating JView

fixes

 Engineering Design Document

 Software Design Document

 User Guide

Weather Editor / FDS Viewer

This deliverable, along with the database design, completed the tasks to “define

the pre-processing environment” and “prototype pre-processing software”. It
demonstrates several capabilities. First, it demonstrates using JView to visualize
ACES input data, in particular Flight Data Set trajectories and weather data.

Second, it demonstrates a Simulation Configuration application that uses a
graphical user interface to allow analysts to easily create large ACES data sets.
Third, it shows how export utilities can be used to create legacy ACES data

formats from database data. This intermediate capability that allows tools to be
used to create data for ACES in advance of an adaptation of ACES code to read
data directly from databases. Deliveries included:

 Software compliant with ACES Build 3.0.1

 Engineering Design Document

 Software Design Document

 User Guide

RTO80 Final Report p. 6

Final Report and Briefing

The present document is the final report. It summarizes the research performed
under the task. It also includes an evaluation of JView as a basis for a

replacement for the existing ACES visualization tool known as the VST.

Deliverable List

The table below summarizes the complete set of deliverables provided under this
task.

Deliverable # Comment

Task Plan 1a NA

Kickoff Meeting at NASA Ames 1b NA

Monthly Status Report, including

technical progress during the

reporting month, plans for the

following month, % complete by

sub-task, risk items and mitigation

plans2

2 NA

Software and Data required under

Task 2/Sub-tasks 1 and 2 and

Task 43

3a Included SPADES Database Schema, initial release of ASRTV

viewer (compatible w/ ACES Build 2.0.3), updated release of

ASRTV viewer (compatible w/ ACES Build 3.0.1).

The Schema included:

 Schema Design Document

 Example MySQL database

 Database utilities (FDS data loader, FDS/Sector

Intersection Finder)

The ASRTV Viewer Included:

 Software, including ACES modifications

 Engineering Design Document

 Software Design Document

 User Guide

Software and Data required under

Task 2/Sub-task 3 and Task 33
3b Included SPADES Weather Editor/FDS Viewer. The ASRTV Viewer

Included:

 Software

 Engineering Design Document

 Software Design Document

 User Guide

Final Report 4 NA

Final Oral Briefing 5 NA

RTO80 Final Report p. 7

2 SPADES Database

2.1 Description

The SPADES database provides database storage for the majority of ACES input

data, including VST Configuration, Simulation Configuration, Static Input Data,
and Flight Data Set Data. Certain classes of externally generated data, in
particular RUC wind data and BADA aircraft data are not included in the SPADES

design. The decision not to include these items was made based on the fact that
these are static data that are used “as is” as provided from their sources.

The database schema takes as its basis the set of simulation data defined for

ACES Build 2.0.3; however it extends the ACES data in several directions.
SPADES adds the concept of user experiments to the current ACES data set. An
experiment is defined as a particular instance of a simulation scenario that is run

at a particular time. The Experiment concept ties together the various sets of
data associated with an ACES run, including Simstartup data, Local Data
Collection (LDC) data, data associated with VST configuration and other related

data items. It is designed with the notion that in a shared development
environment experiments could be created, stored, shared, copied and reused by

ACES users.

The SPADES database has been designed so that it could be used directly by
ACES if ACES were to be modified to read database input files. It can also be

used as a basis for generating data in existing ACES data file formats. This latter
capability is demonstrated in the Weather Editor.

The data remain tied to the source ACES structures but in key areas have been

normalized for better data reuse across simulation experiments. SPADES
provides a normalized view of Flight Data Sets that separates routes from
specific flight plans, and allows for hierarchical creation of flight data sets. A

user can take existing flight data sets and combine them to build new flight data
sets for their experiments. The separation of routes from flight plans also
facilitates reuse and preprocessing, as a user can quickly create a new flight data

set by selecting ‘off the shelf’ flight plans, and further select from a variety of ‘off
the shelf’ predefined routes that are unique between airports or pass through
particular sectors.

The database schema also augments the current ACES data with some concepts
specific to SPADES. The primary example of this is that the SPADES database
stores weather system data for the Weather Editor. The database allows for

storing a shared set of weather systems that a user can select, customize, and
reuse in their experiment.

The products of the SPADES database design include a design document that
defines the SPADES Schema and Naming Conventions and describes the design
logic behind the design. The design document describes the contents of the

database. The document both links the tables back to the Build 2.0.3 source data

RTO80 Final Report p. 8

an, for major data groups describes how data files can be generated from ACES
tables. The schema document does not attempt to re-describe the contents and

semantics of ACES data as these topics are already covered in the ACES User
Manual (CTO7 CTOD7.29).

2.2 Development Process

The database design began with identification of the set of ACES input data to be
included in the database design. This included primarily the data found in:

%CTO7_HOME%/Build1/modules/cto7sim/data

%CTO7_HOME%/Build1/modules/simstartup/bin

and the Local Data Collection data found in

%CTO7_HOME%/Build1/modules/Cybele

Other data groups were specifically excluded from the design. In some cases this
was because they were considered to be static data that were used as-is from

external sources (e.g., Rapid Update Cycle [RUC] wind data and BADA aircraft
characteristics). In other cases the data were considered to be associated with a
lower level middleware tool and changed only infrequently, typically only with

changes in the ACES software (e.g., Federation Object Model [FOM] data).
Cybele configuration data was deemed to belong to this third category, though

users may in fact modify Cybele configuration parameters to control system
features such as logging and profiling. It is recommended that a full
implementation of the SPADES database include these dynamic Cybele

parameters as well.

The philosophy of the database design was to preserve wherever possible the
existing structure of the data. This will ultimately make it easier to integrate the

database schema with ACES software. Balancing this, however, was the fact that
there was room for improvement as the existing set of ACES data is disjointed
and contains some formatting inconsistencies. There were also opportunities to

improve the organization of the data via data normalization. Thus, the resultant
design is easily recognizable to anyone familiar with the ACES but also contains
new concepts and organization to better integrate the total data set.

As described above, the schema design adds the unifying concept of an
Experiment, which ties together the disparate ACES data groups (LDC data,
model data, scenario data, etc.). Experiments also allow experiment-specific

values to override systems defaults for certain data values. The design process
also noted a number of other common items that appear across multiple groups

of ACES data. An example of this case is aircraft type (which appears in Flight
Data Sets and Aircraft Transit Times). Care was taken such that these items
were named and represented consistently across the tables of the database.

Last, the analysis revealed that ACES data clustered into six natural groupings as
follows:

RTO80 Final Report p. 9

 Experiment Specific Data: These data capture the definition of an

experiment and any overrides of default data that are specific to the
experiment. An experiment definition includes selection of Flight Data Set,
LDC configuration, scenario event set and other parameters. Overrides

would include, for example, customized values for airport TFM operational
parameters.

 Configuration Data: These data define the execution parameters for the
simulation, that is, number of Generic Masters, assignment of federates to

hosts, etc.

 Data Collection Data: These items specify the configuration for Local Data

Collection for a particular experiment.

 Reusable Experiment Data: These data are part of the representation of a

particular “day in the NAS” but could be reused across experiments.
Examples here include Flight Data Sets that may be run under differing NAS

capacities or Weather Days that may be used against various demand sets.

 Static Lookup Tables: These represent baseline data that defines the NAS,

such as center boundaries and the set of airports in the NAS.

 Editor Data: these represent data that is specific to SPADES tools rather than

to ACES or the NAS.

Based upon this analysis and categorization a database design was developed.
An overview of the database schema is shown in Figure 3. While this highly

condensed overview of the schema is not particularly legible it does serve to give
an idea of the size and complexity of the schema. More detail is provided in the
schema design document.

RTO80 Final Report p. 10

Figure 3: SPADES Database Schema Overview

RTO80 Final Report p. 11

2.3 Implementation

The design described in this document has been implemented and populated
with sample data using the MySQL relational database management system. The

prototype implementation comprises thirty nine tables, all of which are populated
with example data from ACES and/or SPADES.

3 ASRTV Viewer

3.1 Description

The ACES-SPADES Runtime Viewer (ASRTV) is a tool for visualizing simulation
data from the Airspace Concept Evaluation System (ACES) during runtime. The
program provides a map-based display of ACES data as the simulation executes,

including intent, trajectories and flight events. The tool’s point-and-click interface
allows users to drill down and view more detailed textual information for many
ACES simulation objects.

The tool is implemented as a separate Cybele-HLA based federate that runs
within the ACES federation. Implementing the viewer this way decouples it from
the control functions of the existing VST visualization tool. An ACES federation

can have multiple Runtime Viewers displaying different parts of the NAS. The
Runtime Viewer can also be driven by other HLA-based data sources that comply
with the ACES FOM. For example, the viewer could visualize fast-time data

published through the RTI by a playback application based on Local Data

Figure 3: ASRTV Runtime Viewer Main Screen

RTO80 Final Report p. 12

Collection Data from an ACES run.

The driving requirements for the viewer come from the government’s TO80

Statement of Work. These include the desire to “Separate the ACES Simulation
Control and VST functions” and use “JView two-dimensional libraries to provide a
better plan view map with more information available than in the current ACES

visualization tool”. The definition of a “better plan view map” was not defined in
the SOW and was interpreted as follows: (a) preserve the display capabilities of
VST; (b) implement existing visualization-related Software Change Requests

(SCRs) to the extent possible; (c) capitalize on the capabilities of JView; (d) to
the extent possible implement other features as described by NASA in Kickoff

and Review meetings.

The following SCRs and NASA guidance were partially or fully implemented in the
ASRTV Viewer:

SCR 28: The ASRTV viewer provides a graphical display of conflict events
related to each flight. The conflicts are represented as icons along the
flight’s track. Additional information about a conflict can be viewed by

selecting its graphical conflict icon with the mouse.

SCR26: By providing a 3D view, ASRTV allows viewing of flights’ vertical
trajectory profiles, as flown.

SCR40: ASRTV provides color-coded aging of flight trails.

SCR46: The ASRTV display is fully navigable using the mouse. All items
shown on the 3D display are clickable.

SCR118: The display shows both intent and trajectories as actually flown.

SCR235: See discussion under SCR 28 above.

Figure 3a shows the major display features of the ASRTV viewer. Figure 5b

shows an example of a 3D aircraft visualization in the ASRTV viewer.

RTO80 Final Report p. 13

Airport

Sector

Flight

Maneuver
Event Conflict

Events

Flight Plan (pink) Trajectory showing maneuver (blue)

ARTCC Airport

Sector

Flight

Maneuver
Event Conflict

Events

Flight Plan (pink) Trajectory showing maneuver (blue)

ARTCC

Figure 3a: Display Features of the ASRTV Viewer

RTO80 Final Report p. 14

3.2 Features

The major features of ASRTV include:

 Graphical Visualization of ACES data at runtime

o Flight Plans

o Tracks as flown, including aging of trails

o Events: conflicts, maneuvers, boundary crossings, TOC, TOD

o Static airspace data, including airports, ARTCC and sector

boundaries

o Simulation time and number of aircraft

o Realistic background map

o Ability to show aircraft as icons or using 3D models

o Save and restore views (pan, zoom and center location)

 Drill-down

o Selection of graphical items reveals more data (e.g., selecting a

flight reveals its flight ID, location, speed, origin and destination,
etc.)

Figure 5b: Display Showing 3D Modeling

RTO80 Final Report p. 15

 Mouse-based interface

o Full pan, zoom and 3D rotation using the mouse

o Selection of graphical objects using the mouse

o GUI-based control of all features

 Screen capture and save to JPEG format

 Ability to use flight icons or full 3D models of aircraft

 Compatibility with HLA (RTI NG 1.3), ACES Build 2.0.3 and 3.0.1, ACES

Simstartup

ASRTV has been tested up to a 4800 flight scenario. It should be noted that

running the full JView 3D graphics engine is more computationally intensive than
the simple 2D vector graphics of VST and hence for large scenarios the use of
ASRTV can decrease ACES execution speed.

3.3 Development Process

The architecture of the ASRTV application closely resembles that of the existing

VST tool. Development began by adding new Swing and JView classes to the
VST code. The result was a tool that displayed two maps, the original 2D VST
map and the new JView-based 3D map. This process ensured that the new

visualization code would be called appropriately. Once this tool was tested for
consistency between the two maps, the 2D and configuration-related code was
removed leaving an independent federate.

The strength of this approach is that it ensured that the new federate was
consistent with ACES VST and Generic Master (GM) software in the way it

initializes, is configured and interacts with other federates in the system. There is
one note associated with this, however, in that any other use of ASRTV, for
example, for playback, would need to either mimic the ACES initialization

approach (e.g., by playing back configuration data) or modify ASRTV to
implement a different initialization approach.

3.4 Areas for Potential Future Enhancement

The ASRTV development effort was something of a proof of concept for, as
stated in the RFP “the applicability of the JView 3D API in visualizing ACES

runtime … data.” While it provides a fully capable viewer, additional features
were identified that could further improve the utility of this application. These
include:

Item Discussion/Benefit

1. Implement post-runtime playback
capability.

This would provide the ability to play
back LDC data to the viewer in very

fast time

RTO80 Final Report p. 16

fast time.

This feature would support post-run

analysis in a multiple run environment.

2. Add weather overlays Used in conjunction with the Weather
Editor, this would display Weather

Affected Areas on the Runtime Viewer
to provide visual context for the impact

of weather on simulation execution.

3. Full 3D visualization Currently sectors and center are shown
as 2D projections onto the map. The

enhancement would display these
regions as 3D translucent areas. This
richer representation of the 3D

airspace could enhance analytical
understanding of ACES execution.

4. Convert background map to use
JView V2.0 continuous level of
detail (CLOD) display of Digital

Terrain Elevation Data (DTED)

This would replace the current 2D map
image with a 3D terrain representation.
This would improve visual fidelity and

would also eliminate the manual
process of geo-registering map images.

5. 3D flight icons Currently flight locations are displayed

as an arrow or using a single 3D icon.
This effort would match the 3D
representation to the appropriate

aircraft type for a flight.

This would provide greater visual
realism for demonstrations.

6. Terminal area display enhancements This would augment the terminal area
display to represent enhancements in

ACES terminal area modeling.

7. Aggregate level displays This would add aggregate information
displays as prototyped by AFRL (such

as total delay accrued and aircraft
densities) as an overlay on the viewer
display.

RTO80 Final Report p. 17

4 SPADES Weather Editor

4.1 Description

The Weather Editor is a data preparation and viewing tool for ACES. It was

created to demonstrate the concept of data pre-processing tools for ACES and to
demonstrate the use of the Air Force Research Laboratory JView software
development kit within ACES.

4.1.1 Weather Editing Concept

ACES does not contain an explicit representation of convective weather. Rather,

weather is represented implicitly by its impact on sector and airport capacities.
Thus, modeling a moving weather cell within ACES requires time intensive data
preparation. The analyst must manually determine the set of airports and sectors

affected by the weather at each quarter hour simulation interval and must create
data files to drive the simulation to implement these impacts. The data that must

be created is a set of ACES scenario events. Scenario events allow users to
(among other things) override default values based on time or events triggered
by the evolution of the simulation scenario. Given the large number of sectors

and airports modeled in ACES, manually generating scenario files for a large,
moving weather system rapidly becomes impractical.

RTO80 Final Report p. 18

SPADES introduces an explicit concept of weather that facilitates modeling of
convective weather within ACES. The SPADES database and Weather Editor
support the creation of Weather Systems. A Weather System is a container for a

time series of Weather Affected Areas (WAA). Each Weather Affected Area
represents a 3D geographic region, a time period and a set of impact
parameters. Using the Weather Editor the user can specify a weather system as

a series of WAAs. The program then computes the intersections between these
WAAs and NAS elements (airports and sectors) and generates appropriate ACES

scenario data files. Thus the manual process of scenario file creation is replaced

WAA1: IFR, Sector Capacity = 75%
Start time = 10

WAA2: XFR, Sector Capacity = 55%
Start time = 1000

WAA2: VFR, Sector Capacity = 92%
Start time = 1000

A Weather Affected Area (WAA)
represents weather impacts at
a particular geographic area
and time period.

A Weather System (WS)
is a time-ordered
collection of WAAs.

Longitude

L
a
ti
tu

d
e

Al
tit
ud

e

WAA1: IFR, Sector Capacity = 75%
Start time = 10

WAA2: XFR, Sector Capacity = 55%
Start time = 1000

WAA2: VFR, Sector Capacity = 92%
Start time = 1000

A Weather Affected Area (WAA)
represents weather impacts at
a particular geographic area
and time period.

A Weather System (WS)
is a time-ordered
collection of WAAs.

Longitude

L
a
ti
tu

d
e

Al
tit
ud

e

Figure 3: Weather Representation

RTO80 Final Report p. 19

by a graphical point-and-click process of drawing Weather Affected Areas on a
Map.

The Weather Editor was developed to facilitate modeling of weather within ACES,
however the tool can also be used to represent other airspace phenomena that
can be modeled via capacity changes. An example of this would be modeling of a

Special Use Area that is activated for certain periods within the day.

Figure 3 diagrams the weather representation. Figure 4 shows an example of

how the Weather Editor displays a weather system made up of two Weather
Affected Areas. In the latter image, the WAAs are shown as the two red circles,
airports are shown as blue spheres and sector boundaries are shown in green.

The images also show a set of flight data set planned trajectories, shown in
yellow. The ability to display FDS data is discussed in a subsequent section.

4.1.2 Weather Editing Process

This section presents a process-oriented view of creating weather with the

SPADES Weather Editor. The given example shows how a user would model a
line of storms moving across the SouthEast. The steps involved would be as
follows:

1. Decide on the data that is to be modeled – for example, by sketching out
a weather pattern or obtaining a set of weather photos. This is done
outside of the Weather Editor.

2. Using the editor, create a weather system within the database. Add WAAs
to the weather system to model the movement of the storm (see the

Figure 4: Example Weather System

RTO80 Final Report p. 20

image below for an example). Using the mouse (for location/size) and the
spreadsheet in the WAA List window (other parameters) enter data for

each WAA.

3. As needed, add additional weather systems and WAAs to model the extent
of the storms. Figure 5 shows an example of the Weather Editor display

populated with weather systems. The figure shows a line of storms with a
considerable North/South extent. This is modeled in the weather editor
using three parallel weather systems. Note that it is possible to copy and

paste entire weather systems to easily produce data sets such as that
shown above.

4. Save the data set to the database.

5. Use the editor’s Weather/Scenario Events/Generate function to populate
the scenario event table with weather-related scenario events. From this

table, generate an ACES format scenario event file.

4.1.3 Weather Generation Algorithms

As mentioned above, ACES does not at present contain an explicit weather agent
capable of directly interpreting weather data. Thus, weather data must be
translated into a form that can be used by ACES. In practice with Build 3.x, this

means translating weather data into a series of ACES scenario events.
Generation of scenario events from weather system data is a three step process.

First, the WAAs in a each weather system are interpolated to provide continuous

Figure 5: Example of drawing a moving line of storms in the Weather Editor

RTO80 Final Report p. 21

weather coverage. Second, the impacts for the sectors and airports are
computed. Last, scenario events are generated and exported.

Interpolation

The need for interpolation comes about for two reasons. First, it is a convenience

feature that reduces the number of WAAs the user has to define. Second, it
reduces the possibility of missed impacts due to holes or scalloping at the WAA
boundaries. For example, Figure 6 shows how an airport (EWR) could be missed

because it is outside the boundaries of two defined WAAs even though it is
clearly in the path of the weather. The figure shows how interpolation improves

the sampling of the

path of a weather
system.

ACES sector and

airport capacities are
specified for quarter
hour intervals. The

WAA interpolation
algorithm interpolates

between WAAs to 7.5
minute increments as
a sort of Nyquist Rate

– i t does not
completely eliminate
problems with holes

and scalloping but
greatly reduces their
magnitude.

For the purposes of
interpolation, a WAA

is considered to be in effect at its specified location from its start time until the

end of its linger period (startTime + lingerTime). Between this time and the start
time of the next WAA in the Weather System the WAA is linearly interpolated at
7.5 minute intervals. The interpolated values include location, radius, minimum

and maximum altitudes and sector impact percentage. The airport state is a
discrete value and so cannot be interpolated. Instead, the value of the WAA itself

is used for all interpolated WAAs until the next specified WAA in the weather
system.

Interpolated WAAs have zero linger time.

Impacts

After the set of interpolated WAAs is generated the next step is to determine

which sectors and airports are affected. An airport is affected by the WAA if its

WAA1: IFR, Sector Capacity = 75%
Start time = 10

WAA2: XFR, Sector Capacity = 55%
Start time = 1000

LGA
ZNY01

ZBW02

Step 1: Interpolate between
WAAs as needed to get an
uninterrupted time series

EWR

WAA1: IFR, Sector Capacity = 75%
Start time = 10

WAA2: XFR, Sector Capacity = 55%
Start time = 1000

LGALGA
ZNY01

ZBW02

Step 1: Interpolate between
WAAs as needed to get an
uninterrupted time series

EWREWR

Figure 6: WAA Interpolation

RTO80 Final Report p. 22

location (in three dimensions) falls within the WAA’s coverage envelope. A sector
is affected if it intersects the WAA’s coverage at all. No adjustment is made for

the percentage of overlap between the WAA and the sector.

Resolution Among WAAs

A user may specify multiple overlapping WAAs, either within the same weather
system or across weather systems in an experiment. In addition, Interpolation
may generate additional overlaps. Thus, the algorithm contains a mechanism for

resolving cases where an airport or sector is simultaneously affected by multiple
WAAs.

The resolution algorithm is simple: Within a Weather System, of the WAAs that

affect a given sector or airport, the one with the latest start time is chosen.
Across Weather Systems, from among the WAAs the algorithm takes the one
that has the greatest impact. For sectors, this means the WAA with the lowest

value for percentSectorCapacityChange. For airports, this involves a lookup to
see which of the specified airport states has the lowest capacity. This resolution
algorithm supports bad weather insets, for example, a moderately stormy area

with a smaller, intensely stormy core. It does not, however, support the inverse
– a toroidal area of impact with a calm core.

Weather Export Algorithm

ACES does not at present have a mechanism for reading scenario from a
database and so a function was created to export the weather data to ACES

format scenario data files. The weather export algorithm translates sector and
airport impacts identified by the weather generation algorithm into ACES

scenario events. Since the weather generation algorithm calculates and stores
quarter hour impacts for the entire duration of the simulation, the export
algorithm is largely a matter of exporting data records from the SPADES

database to appropriately formatted ACES scenario .csv files.

4.1.4 Flight Data Set Viewing Concept

The ACES Weather Editor also provides a means to graphically display ACES
Flight Data Sets. A Flight Data Set (FDS) file consists of a collection of individual
flight entries, where each flight carries its identifier, departure time, planned

trajectory, cruise altitude and other data. The FDS viewing concept within the
Weather Editor allows users to visualize FDS data by plotting trajectories in 3D

RTO80 Final Report p. 23

relative to a map of the United States and NAS elements. FDS viewing allows the
user to “slice and dice” Flight Data sets in various ways, allowing the user to limit

flights displayed by time, origin and destination airports, flight ID and ARTCCs
traversed. The trajectories displayed are simply the airport-to-airport fix lists
contained in the input flight plan (FDS/ETMD) data files; they do not include any

of ACES’ pre-flight computations such as insertion of meter fixes. Figure 6 shows
three different views of a small Flight Data Set: 2D, 3D and a list of the flights.
The flights are color-coded according to departure airport. Figure 6 shows an

example of displaying a large flight data set in its entirety.

Figure 6: Flight Data Set View Showing Three Simultaneous Views: 2D, 3D and list of
flights

RTO80 Final Report p. 24

4.2 Features

The major features of the Weather Editor / Flight Data Set Viewer include:

 Overall

o 3D map GUI with full rotations/translation/zoom.

o Clickable screen display.

 Weather Editing

o Creation of an explicit representation of convective weather for
ACES.

o Ability to graphically draw areas affected by weather.

o Ability to graphically draw the movement of storms as a series of
weather affected areas, each with its own parameters.

 Weather Generation

o Automated computation of sectors and airports affected by weather

areas drawn by the user.

o Computation of impacts on each affected airport and sector.

Figure 6: Visualization of the 5/17/02 Baseline Flight Data Set

RTO80 Final Report p. 25

o Generation of scenario events corresponding to the affected
airports and sectors.

 Weather Data Export

o Generation of ACES scenario data files from weather data.

 Flight Data Set Viewing

o Ability to visualize flight data sets in 3D (filed flight plans).

o Ability to display subsets of data based on airline/flightID, arrival
and departure airports, time and ARTCCs traversed.

 Fully integrated with SPADES database and ACES Build 3.0.1.

4.3 Development Process

The Weather Editor is the first ACES data pre-processing tool prototypel. It is
compliant with the SPADES concept and operates on a database rather than

ACES text files. Because its functionality is new it was not built from pre-existing
ACES components and in fact uses only a small number of ACES classes
(primarily class SharedData). The program was, however developed to be

consistent with ACES in that ACES coding standards, directory structures and
CVS comment tags were used in all Java files. The Java package structure used
for the software is also consistent with ACES and in fact the delivered SPADES

code is designed to fit within the overall ACES directory hierarchy.

The software uses a Model-View-Controller software pattern which allows the
user to make edits on various screens (in particular, on the map display and on a

secondary spreadsheet window) while maintaining consistent data views across
the screens and the underlying data structures.

4.4 Areas for Potential Future Enhancement

The Weather Editor demonstrates the SPADES pre-processing concept and is a
fully functional tool. However, there are ways in which its utility and usability

could be enhanced. Further, its connection to ACES is via scenario files as ACES
does not have a Weather Agent. It is envisioned that the tool could be adapted
to create data for a future explicit ACES weather representation as well.

Specific areas identified for potential enhancement include:

Item Discussion/Benefit

Weather Editor

1. Overlay real-world weather maps on
weather editor display.

Facilitates drawing of Weather Affected
Areas that closely mirror real weather.

2. Linkage to real-world sources Investigate generating ACES weather
data directly from real-world data

RTO80 Final Report p. 26

sources.

3. Dynamic preview Shows a preview of temporal evolution

of flights (using ACES initialization
data) and weather patterns. Useful for
developing weather and flight data

sets.

4. Integrate wind and convective

weather

Currently Weather Affected Areas

(WAAs) impact airport and sector
capacities. This enhancement would
override the default RUC values within

WAAs, for example with a multiplier on
wind speed or a local wind model.

Other Tools

1. FDS generation tool Combine SPADES database, FDS
Viewer with NASA demand generation

algorithms to create a demand
generation / editing tool.

5 Evaluation of JView

5.1 Summary

The explicit goals of this task included producing “graphical displays that confirm
the utility of the JView API for visualizing airspace simulation data” and

“determine[ing] whether JView could form the basis for a replacement for the
existing ACES visualization tool known as the VST.” The tasks that were designed
and performed as part of this project were specifically designed with these

evaluations in mind.

During our work with JView we encountered both powerful strengths and

hindering weaknesses within the tool. The sections below describe some of
these experiences and suggest ways to improve the product.

As part of our evaluation of JView we also performed a survey of other similar

graphics engines. In doing so we limited our scope to those packages that would
be suitable for ACES: Java graphics engines that would operate across the likely
range of supported ACES platforms (MS Windows, Linux and Mac OS X). This

section also presents the results of that survey.

In general, the set of Java-based, multi-platform scene graph (scene graphs are
discussed below) graphics engines is fairly sparse. There is no dominant package

in terms of either features or market penetration. The JView API was created

RTO80 Final Report p. 27

because as of several years ago there was a true void in such a graphics
capability and the JView engine remains a viable choice today.

The principal challenges in applying JView stem from the fact that it maintains
the flavor of “research code” in its documentation, code quality and
support/distribution mechanisms. The software has a strong set of features

however some effort needs to be spent on improving the quality and usability of
the code. Doing so would make JView a strong tool for Java-based simulation
applications.

JView provides a rich visual environment for pre-processing tools. It support
clickable, interactive graphics that allow users to, for example, drag and drop,

draw and resize items on the screen. As such it is a good basis for pre-
processing tools. One of the strengths of JView in this area, however is also in
some ways a weakness. JView is a full 3D graphics engine and as such models a

certain degree of 3D perspective. This can be visually confusing when viewing,
for example, planned trajectories that are in fact on top of one another but
which appear offset because they are being viewed from an angle. In much of

the data entry for ACES the vertical dimension is separated from the horizontal
dimensions (for example, a flight plan as a set of 2D waypoints vs. the flight’s
altitude profile) and so a 2D engine would be a useful tool addition to the JView

toolkit.

A 2D engine would also be useful from a performance perspective. Because of
the computational requirements of 3D graphics such an engine is always going to

be slower than the simple raster graphics used in the VST. Thus, the answer of
whether JView would be a viable substitute for VST is that it can display
everything VST does and more, however running large numbers of flights with a

more complex graphics engine is slower than running with VST. There is a
performance price to be paid for higher end graphics. To some extent this
performance cost could be mitigated by running JView-based applications on

higher-end machines with GL optimized graphics, however such machines are
not part of the typical ACES cluster. The runtime viewer application has not been

tested on such hardware.

All that having been said, the JView engine remains a viable choice for 3D
graphics visualization of ACES and NAS data, however in some instances a 2D

engine more akin to a GIS would be a better match because of usability or
performance reasons. The remainder of this section summarizes our specific
findings relating to JView.

5.2 JView Strengths

1. No prior knowledge of OpenGL necessary

JView allows developers to create 3D applications with little to no prior
knowledge of OpenGL or 3D graphics. To accommodate advanced users, the
API offers access to the underlying, low-level OpenGL calls.

RTO80 Final Report p. 28

2. Scene graph architecture

JView uses a scene graph architecture which is generally considered very

intuitive and well-suited for graphics development. A scene graph stores
graphical elements in an acyclic tree in which the nodes represent elements,
groups of elements, or transformations. For instance, a figure's "arm" node

could contain a "hand" element which contains a group of "finger" elements.
JView's scene graph implementation is logical and uncluttered, particularly when
compared to lower level APIs such as Sun's Java3D.

3. Focus on performance

Java is often criticized for exhibiting poor performance when compared to

programming languages such as C or C++. The JView team is very aware of
these performance concerns and has proven very knowledgeable and
conscientious when developing its product.

4. Developers are open to questions and code changes

The JView team has been very open to questions and comments. Their
responses were quite clear and helpful. When our inquiries uncovered bugs or

missing features, the team was willing to update the code accordingly.

5. API is available at no cost as GOTS

The JView API is developed and maintained by the Air Force Research Lab. It is

available without cost to government users and programs. This is an advantage
in environments where it is desirable to minimize total licensing costs.

5.3 JView Weaknesses

1. Documentation

The most notable problem we encountered with JView was its lack of complete,

consistent documentation. It was difficult to get an overall picture of the
functionality of the package. The "Introduction to JView" Word document did a
good job of describing how scene element hits work, but omitted important

information on scene element creation and oddments. The JavaDocs were also
patchy with many uncommented parameters and methods. For instance, there
was no mention that the TextImageContainer's selection feature was not

functional, or that the TextRasterElement's font size/face could not yet be
changed from the default values. In contrast, the DemoBrowser application
contained sample code that was quite helpful. Among these three documents we

were able to gather some idea of JView's capabilities and fill in the blanks
through trial and error. Documentation improvements would greatly strengthen

JView and make it accessible to a wider audience.

2. Incompleteness of Features

The Text classes mentioned above are but one example of cases where features

in JView either weren’t functional or didn’t work as they should have. A number

RTO80 Final Report p. 29

of features, including the 2D API and “lenses”, turned out to be concepts rather
than functioning code. These incomplete implementations were frustrating to

work with, particularly given the afore-mentioned lack of documentation.

3. Communication problems

During development we often had difficulty consistently reaching the JView team

by e-mail and telephone. At times we would receive multiple responses within a
day while at other times we would have to wait 1-2 weeks for a response. One
solution to this problem would be to implement a formal help or bug reporting

system so users could be assured their inquiries have been received.

4. Formality in development

While concluding development of the Weather Editor, we found that certain
properties of the Torus class had been removed in newer versions of JView. No
path for backwards compatibility appeared to be available, so separate JView

versions were included with the Weather Editor and ASRTV viewer. It is
generally not clear which of the fixes AFRL provided will make it into the JView
baseline and when they will do so. It would be helpful to users if these types of

changes were formally considered and documented for groups using older
releases.

5.4 Comparative Analysis

As mentioned above, as part of our evaluation of JView we surveyed similar
similar graphics engines. We limited our scope to those packages that would be

suitable for ACES: Java graphics engines that would operate across the likely
range of supported ACES platforms (MS Windows, Linux and Mac OS X).

From our survey we conclude that scene graph APIs such as JView and Java3D

are the most practical choices as they offer short development time and flexible
feature sets. For comparison and completeness other categories of graphics
APIs are also described.

1. Low-level graphics APIs

These APIs allow users to create graphics by accessing low-level OpenGL

primitives. This is attractive because it grants the user complete control over
visuals and performance. The downside to these products is that they require
extensive graphics/mathematics expertise and generally increase development

time when compared with scene graphs.

P r o d u c t s i n t h i s c a t e g o r y i n c l u d e G L 4 J a v a

(http://www.jausoft.com/gl4java.html), Java bindings for OpenGL (JOGL)
(https://jogl.dev.java.net), and the Lightweight Java Game Library (LWJGL)
(http://www.lwjgl.org/). They wrap OpenGL functions calls in a single class and

are similar enough in syntax that porting code between them is easy. GL4Java

RTO80 Final Report p. 30

has not been updated since 2001 and is generally considered defunct. Sun is
currently supporting JOGL as the standard OpenGL binding. LWJGL is a

relatively new project that emphasizes speed for game development purposes. It
should be noted that according to its documentation JView is based on GL4Java.

2. GIS-specific libraries

These libraries offer classes that assist with geographic visualization and
coordinate manipulation. They generally emphasize 2D map displays with little

support for 3D graphics. Many of them offer the capability to connect to a GIS
database and create web-based client applications.

Products in this category include OpenMap, MapObjects, and ILOG JViews Maps.

OpenMap (http://openmap.bbn.com/) is an open source JavaBeans-based
product created by BBN Technologies. It allows the user to pull information from

databases to generate interactive maps, primarily using 2D graphics with some
support for the Java3D API. BBN Technologies offers training, consulting
services, and tech support contracts.

MapObjects (http://www.esri.com/software/mapobjects/) is a set of commercial
2D mapping components that support Java, Visual Basic, PowerBuilder, and
Visual C++ development. It supports database connectivity, web connectivity,

and a variety of CAD/GIS/image file formats.

ILOG JViews Maps (http://www.ilog.com/products/jviews/maps/) is a commercial
Java-based library with an emphasis on light web clients. It offers capabilities to

pull data from a variety of commercial map servers and allows developers to
generate highly interactive 2D maps.

3. Scene graph-based Java APIs

Scene graph APIs (JView included) make use of acyclic tree structures to store a
scene's graphical elements. The tree's objects, or nodes, usually consist of

single elements or groups of elements. This structure is intuitive because it
allows like items to be gathered in a logical way. The scene graph structure also

allows a certain appearance or behavior to be applied to a group of nodes rather
than having to iterate through each individual member. For instance, in the
ASRTV viewer, all airport elements were grouped into a single node. This

facilitated implementation of features such as toggling airport icons on and off.

In addition to JView, Java scene graph APIs include Java3D, Xith3D, and jME.

The Java3D API was developed by Sun from 1998 to 2002. There has been no

significant development or releases as of late, but the API's source code was
recently opened by Sun for community development. It is very well documented
with detailed tutorials, JavaDocs, and manuals available online. Java3D has a

RTO80 Final Report p. 31

reputation for poor performance, however, this point is heavily contested by
proponents. Unlike the other APIs described in this section, Java3D binds

directly with OpenGL rather than using an intermediate layer such as JOGL or
LWJGL. It also differs from the others because it limits access to low-level
OpenGL calls. (http://java.sun.com/products/java-media/3D/)

Xith3D is an open source scene graph API that is built upon JOGL. It may also
be used with LWJGL and offers access to low-level OpenGL calls through both
binding sets. Xith3D emphasizes performance for use in game development. To

achieve this goal, developers have left out features such as thread safety, which
they feel greatly hinders performance in the Java3D API. It has limited

documentation when compared to Java3D. (http://xith.org)

jME (jMonkey Engine) is another open source project similar to Xith3D. It was
initially built on LWJGL with JOGL support expected in the near future. jME

allows access to low-level OpenGL calls for advanced users. It shares Xith3D's
goal of performance improvement for game creation and also drops thread
safety to achieve this. It is well documented and has an active online

community. (http://www.mojomonkeycoding.com)

6 Summary
The efforts performed under this project successfully developed and
demonstrated a concept for ACES pre-processing tools. The JView graphics API

was also evaluated and several prototypes were developed showing the
applicability of this software to visualization of ACES data. All in all, graphical

tools operating on a relational database such as were demonstrated in this
project would provide a powerful data pre-processing environment for ACES.
Such an environment would improve the simulation’s usability. Application of

analogous visualization tools to simulation outputs would similarly improve users’
productivity in analyzing run results.

RTO80 Final Report p. 32

7 Acronyms

ACES Airspace Concept Evaluation System

SPADES Scenario Processing and Data Environment for Simulations

VAMS Virtual Modeling and Simulation

VAST Virtual Airspace Simulation Technologies

API Application Programmer’s Interface

SSDD System/Subsystem Design Description

SDD Software Design Document

NAS National Airspace System

SCR Software change Request

WAA Weather Affected Area

AATT Advanced Air Transportation Concepts and Technologies

SUA Special Use Area

RTO80 Final Report p. 33

8 References

1. ACES System/Subsystem Design Description (SSDD). ATMSDI CTO7 CTOD
7.27

2. ACES Software Design Document (SDD). ATMSDI CTO7 CTOD 7.38.

This page intentionally left blank.

